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ABSTRACT 
Fine-resolution spatial analytics are essential for urban planning and 
policy-making, yet traditional small-area estimation often struggles 
with sparse, hierarchical, or imbalanced data. This paper introduces a 
Spatially Regularised Bayesian Heterogeneous Graph Neural 
Network (SR-BHGNN) that integrates multiple census tract levels 
within a unified framework. The model builds a heterogeneous 
graph where nodes represent spatial units at different scales, edges 
encode adjacency or membership, and Bayesian inference quantifies 
uncertainty in parameters and predictions. A spatial regularisation 
term, inspired by Tobler’s First Law of Geography, penalises large dis
crepancies between neighbouring nodes, reducing errors in imbal
anced datasets and ensuring coherent local estimates. We evaluate 
SR-BHGNN through two London case studies, population estimation 
and PM 2:5 prediction, comparing it against random forests, single- 
level GNNs, and spatial hierarchical Bayesian estimation. SR-BHGNN 
achieves strong performance gains, with classification accuracies of 
0.85 for population estimation and 0.81 for PM 2:5 prediction. Its 
Bayesian design produces posterior distributions that capture uncer
tainty, enabling policy-relevant insights into vulnerable neighbour
hoods or priority intervention zones (e.g. low-emission areas). These 
results demonstrate that SR-BHGNN advances the state of the art in 
small-area estimation, offering a flexible, uncertainty-aware frame
work for diverse urban analytics applications.
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1. Introduction

Urban spaces are inherently hierarchical, with spatial data often spanning multiple 

geography scales and varying in granularity and quality (Mu and Wang 2006, 
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Fotheringham et al. 2009, Anselin 2013). Fine-scale spatial information is essential for 
informed local decision-making, planning, and policy implementation, yet these data 
are frequently unavailable, incomplete, or costly to collect. (Tate and Atkinson 2001, 
Goodchild 2007). Conversely, data aggregated at coarser administrative or geographic 
scales tend to be more readily accessible and reliable but lack sufficient spatial detail 
to support precise local interventions (Wang et al. 2024). Such a scale mismatch is a 
persistent challenge in urban analytics, motivating researchers to explore approaches 
that can accurately estimate fine-scale information by ‘borrowing strength’ from 
coarser-resolution datasets and spatial patterns (Ghosh and Rao 1994, Pfeffermann 
2002, Rao and Molina 2015, Luo et al. 2025).

Traditionally, statistical methods such as small-area estimation (SAE) (Rao and 
Molina 2015, Whitworth et al. 2017) and geographically weighted regression (GWR) 
(Fotheringham et al. 2009) have been widely adopted for such downscaling tasks. SAE 
methods typically rely on hierarchical Bayesian or empirical Bayes frameworks that 
introduce random effects or partial pooling to transfer information across administra
tive units, particularly in cases where local data are sparse (Guan et al. 2011, Rao and 
Molina 2015, Yao et al. 2017). Hierarchical models explicitly represent both local varia
tions and broader-scale commonalities, acknowledging that smaller areas are nested 
within larger geographic entities (Banerjee et al. 2003, Cressie 2015). However, these 
statistical methods generally assume linear relationships or strong parametric spatial 
structures, restricting their effectiveness when applied to complex urban environments 
characterised by heterogeneous data and non-linear spatial dependencies.

Recent advancements in machine learning and spatial data science offer more flex
ible solutions for addressing these complexities (Singleton et al. 2020, Jiang and Rao 
2020). Graph Neural Networks (GNNs), in particular, have gained prominence for mod
elling spatial interactions, as they naturally represent spatial units as nodes and spatial 
relationships as edges within a network structure (Liu and Biljecki 2022, Wang and 
Zhu 2024, Zhu and Ma 2025). Despite their strengths, standard GNN architectures typ
ically assume homogeneous node and edge types, limiting their capacity to integrate 
and effectively leverage multi-scale data sources. Additionally, traditional GNN imple
mentations rarely provide rigorous uncertainty quantification, which is a crucial com
ponent for supporting transparent and informed policy-making and planning decisions 
(Banerjee et al. 2003, Li et al. 2023b).

To address these methodological gaps, this paper proposes a Spatially Regularised 
Bayesian Heterogeneous Graph Neural Network (SR-BHGNN) for hierarchical small-area 
estimation. The SR-BHGNN approach constructs a multi-scale, heterogeneous graph 
structure that explicitly models both adjacency relationships (neighbourhoods) and 
hierarchical membership (nested census tract boundaries). Bayesian inference enables 
principled quantification of predictive uncertainty, enhancing the interpretability and 
reliability of downscaled estimates. Furthermore, inspired by Tobler’s First Law of 
Geography (Tobler 1970, Anselin 2013), we introduce an external spatial regularisation 
penalty that encourages coherence in predictions between geographically proximate 
areas, while allowing flexibility to accommodate local heterogeneity.

We empirically validate the proposed SR-BHGNN using two real-world case studies 
from Greater London, UK: (1) estimating small-area population distributions and 
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(2) predicting local exposure to fine particulate matter (PM2.5). These cases exemplify 
common scenarios where fine-scale estimates are needed but detailed local data are 
scarce or incomplete. By systematically comparing our model’s performance to estab
lished statistical benchmarks (spatial hierarchical Bayes models), conventional machine 
learning methods (random forests), and existing GNN architectures, we demonstrate 
improvements in predictive accuracy, robustness to data imbalance, and, importantly, 
calibrated uncertainty quantification. Additionally, we assess model performance under 
two distinct scenarios, complete versus limited fine-scale data availability, to illustrate 
its practical applicability.

To summarise, in this paper:

� We introduce SR-BHGNN, a flexible Bayesian hierarchical graph neural network 
explicitly designed for fine-scale estimation using coarser-scale geospatial data.

� We incorporate an external spatial regularisation term to improve robustness 
against spatial imbalance and enhance local predictive coherence.

� We rigorously quantify prediction uncertainties using Bayesian inference, validating 
these uncertainties through empirical coverage and probabilistic scoring metrics, 
such as the Continuous Ranked Probability Score (CRPS).

� We demonstrate the effectiveness of SR-BHGNN through two policy-relevant urban 
analytic tasks, fine-scale population estimation and air pollution exposure model
ling, using detailed empirical studies from Greater London.

2. Background

2.1. Small-area estimation and hierarchical spatial modelling

Small-area estimation (SAE) involves the statistical prediction or imputation of attrib
utes at fine spatial resolutions, particularly in situations where direct measurements at 
these scales are limited, costly, or otherwise unavailable (Rao and Molina 2015, Ghosh 
2021). SAE approaches are commonly employed to address spatial mismatches 
between the resolution at which data are available and the finer scales at which urban 
planning and policy interventions must be implemented. These methods are critical 
for urban analytics tasks such as environmental monitoring, resource allocation, public 
health planning, and infrastructure development (Morales et al. 2021, Corral et al. 
2022, Edochie et al. 2025).

In the domain of remote-sensing and raster-based spatial analysis, techniques analo
gous to small-area estimation, often termed ‘downscaling’, are well-established, and 
they typically involve refining coarse-resolution continuous datasets (such as satellite 
imagery) to produce finer-scale predictions (Wang et al. 2022). Techniques such as image 
super-resolution, data fusion, and interpolation have been extensively explored in envi
ronmental applications, including the enhancement of spatial detail in products like 
land surface temperature maps, precipitation maps, or vegetation indices (Atkinson et al. 
2008, Gocht and R€oder 2014, Yue et al. 2015, Cheng et al. 2024). Such methods capitalise 
on the spatial continuity and regularity inherent to raster data structures.

However, urban analytics predominantly involves vector-based data, structured 
according to administrative or political boundaries (e.g. census tracts, neighbourhoods, 
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districts), presenting unique methodological challenges compared to raster-based con
texts. Vector polygons representing these administrative units are inherently irregular, 
heterogeneous in size and shape, and nested within multi-level administrative hierar
chies (e.g. neighbourhoods within districts, districts within cities) (Fotheringham et al. 
2009, Fotheringham 2024). Furthermore, each polygon typically encompasses numer
ous attributes, including socio-economic, demographic, or infrastructural variables col
lected from diverse sources, such as government surveys, private-sector databases, or 
crowdsourced platforms (Dem�sar et al. 2013, Singleton et al. 2020). Consequently, 
standard raster-based approaches and assumptions, such as spatial continuity or uni
form grid cells, do not directly transfer to the polygon-based, attribute-rich, and hier
archical context of urban spatial data (Kirilenko 2022, Mai et al. 2024).

Hierarchical spatial modelling methods, such as hierarchical Bayesian or empirical 
Bayes frameworks, have traditionally been adapted from statistics and demography for 
small-area estimation purposes. These models introduce multi-level random effects or 
partial pooling to leverage data across spatial scales and manage uncertainty in sparse 
local observations (Ghosh 2021, Rao and Molina 2015). Parametric Bayesian models 
that explicitly couple multilevel structure with horizontal spatial dependence, such as 
hierarchical Spatial Autoregressive (SAR) models and hierarchical Spatial Error/Spatial 
Moving Average (SEM/SMA) models, demonstrate how these dependencies can be 
jointly specified, but at the cost of strong functional forms and non-trivial identifica
tion or estimation complexity (Anselin 1988, Dong and Harris 2015, Wolf et al. 2021). 
These approaches highlight both the potential and the challenges of Bayesian formu
lations for capturing multi-level spatial processes, motivating the wider use of 
Bayesian methods. Meanwhile, existing statistical hierarchical methods typically rely on 
restrictive parametric assumptions, such as linear relationships or simple spatial 
dependence structures, which limit their effectiveness when confronting the complex 
non-linear interactions and heterogeneous spatial dependencies common in urban 
environments (Anselin 2013, Arribas-Bel and Fleischmann 2022); thus, resulting in 
uncertainties that are underexplored in urban analytics.

2.2. Bayesian-based urban analytics

Bayesian methods have a rich history of addressing uncertainty and hierarchical struc
tures in spatial analysis. Early applications in disease mapping and ecological statistics 
demonstrated the power of hierarchical Bayesian models to capture area-level variabil
ity while borrowing strength across regions (Clayton and Kaldor 1987, Cressie 2015). In 
small-area estimation, hierarchical Bayes and empirical Bayes strategies improved esti
mates in sparsely sampled areas by introducing multi-level random effects and partial 
pooling (Ghosh and Rao 1994, Banerjee et al. 2003). These foundations have since 
expanded into spatial econometrics (Anselin 2013), where Bayesian formulations allow 
for complex spatial correlation structures and intricate dependencies among economic 
or demographic variables (LeSage and Pace 2009).

Recent advances in urban analytics reflect a growing interest in Bayesian modelling 
for large and heterogeneous datasets. For instance, Integrated Nested Laplace 
Approximation (INLA) has been used to efficiently approximate posterior distributions 
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in spatially explicit models (Rue et al. 2009, Fuglstad et al. 2014, Berild et al. 2022), 
while Bayesian hierarchical frameworks have facilitated the fusion of diverse data sour
ces (e.g. traffic flows, social media, environmental measurements) into unified predict
ive models (Huang and Abdel-Aty 2010, Diaconescu et al. 2014, Britten et al. 2021). 
These methods underscore the recognition that uncertainty quantification is essential 
in policy-relevant domains, where biased or imprecise estimates can lead to subopti
mal decisions regarding infrastructure, healthcare, or environmental management 
(Atkinson and Tate 2000, Chiles and Delfiner 2012).

2.3. Graph modelling in urban studies

Graph modelling has long been pivotal in geospatial research, offering a formal repre
sentation of entities (e.g. neighbourhoods, intersections, buildings) and their intercon
nections (e.g. shared borders, roads, or socio-economic ties) (Ghosh et al. 2024). Within 
urban studies, these methods have been widely employed for network analysis, lever
aging topological properties such as centrality, clustering, and connectivity to examine 
issues ranging from transportation efficiency to socio-spatial inequalities (Boeing 2017, 
2022; Yap and Biljecki 2023). Recognising that contemporary urban systems often fea
ture nested administrative structures, where local districts or neighbourhoods fall 
under broader jurisdictions like boroughs, counties, or metropolitan regions, recent 
research has explored hierarchical graph representations to account for multi-scale 
dependencies and varying data availability across different administrative tiers (Wang 
et al. 2021). For instance, studies on infrastructure resilience frequently model energy 
or water networks at both city-wide and neighbourhood-specific levels, connecting 
strategic nodes (e.g. power plants) with local distribution nodes (e.g. substations) in a 
layered graph structure (Ferrario et al. 2016). Similarly, small-area estimation efforts 
increasingly adopt multi-level graph models that ‘borrow strength’ from higher-level 
aggregations when local data are sparse, yet still preserve the autonomy of finer- 
grained units (Molina et al. 2014).

In recent years, Graph Neural Networks (GNNs) have gathered significant attention 
for modelling complex urban networks, mirroring broader shifts in spatial data science 
(Liu 2024). Unlike traditional raster-based methods, GNNs naturally accommodate non- 
Euclidean spatial structures, in which entities (e.g. neighbourhoods, intersections, or 
facilities) and their connections (e.g. shared boundaries, roads, or infrastructure net
works) are expressed as a graph. This graph-based perspective is especially valuable 
for applications where relational dependencies, such as traffic flow along roads or 
adjacency among census tracts, strongly influence urban dynamics (Liu and Biljecki 
2022). However, many GNN-oriented approaches remain confined to a single scale of 
analysis and produce deterministic outputs. Only recently have researchers begun to 
incorporate multi-level or hierarchical dimensions into GNN frameworks, aiming to 
capture the nested nature of geospatial boundaries while reflecting spatial dependen
cies across different scales (Li et al. 2023b, Chen et al. 2024, Wang and Zhu 2024, Liu 
et al. 2025a). Nevertheless, these early developments often lack rigorous uncertainty 
quantification and overlook the complexities of downscaling, wherein information 
must flow from coarser aggregates to finer units. In the following sections, we address 
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these shortcomings by introducing a Bayesian, spatially regularised heterogeneous 
GNN, SR-BHGNN, that manages hierarchical urban structures, quantifies uncertainty, 
and facilitates downscaling for policy-relevant applications.

3. Method

Figure 1 illustrates the proposed SR-BHGNN framework, which comprises two main 
components: hierarchical spatial graph construction and the SR-BHGNN model. In the 
following sections, we introduce each component, detailing its respective structures 
and roles within the overall architecture. It is worth noting that in this paper, we use 
the term ‘scale’ to refer specifically to the horizontal grouping/adjacency structure at a 
given geospatial unit level (i.e. OAs and LSOAs, see Figure 1 and Section 4). We distin
guish this structural notion of scale from ‘ancillary data’, which in the small-area esti
mation literature typically refers to independent, externally obtained datasets that are 
combined with core data through a separate modelling step (e.g. dasymetric weights, 
remote-sensing covariates) (Rao and Molina 2015, Dong and Harris 2015). In our 
experiments, the only information from higher levels used by the hierarchical models 
is the grouping structure and the variables already measured at those levels; we do 
not introduce external ancillary data sources.

3.1. Hierarchical spatial graph

To construct a multi-level, heterogeneous, hierarchical graph, we draw upon two sets 
of statistical geography units (i.e. census tracts, see Section 4), corresponding to differ
ent spatial scales: larger spatial units and smaller spatial units. Each unit is associated 
with a set of features (e.g. socio-economic indicators, environmental measurements, 

Figure 1. The framework for the proposed SR-BHGNN.
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see details in Section 4) and, for smaller units, a target variable to be predicted. The 
final graph encodes horizontal adjacency within each scale and vertical membership 
relationships between scales, forming the foundation for the Bayesian GNN approach 
discussed in Section 3.2. An illustrative figure can be found in the left part of Figure 1.

Within each spatial scale, spatial adjacency is determined using a Queen contiguity 
(Rey et al. 2022), whereby two polygons are deemed neighbours if they share at least 
one boundary point or vertex; these edges facilitate horizontal message passing within 
each scale, capturing local spatial dependencies. Queen contiguity is a standard and 
widely adopted specification for irregular spatial units (e.g. census tracts), commonly 
used in spatially explicit geospatial artificial intelligence (GeoAI) applications for urban 
modelling (De Sabbata and Liu 2023, Liu et al. 2025a). Nonetheless, alternative adja
cency definitions, such as Rook contiguity, barrier-aware contiguity, or centroid-based 
k-nearest-neighbour graphs, are equally feasible. We report the results for these var
iants in Table A1 of Appendix A to demonstrate the robustness of our findings to the 
choice of spatial graph.

Membership edges are established between smaller and larger units based on spa
tial containment, reflecting the hierarchical nature of urban systems. If a smaller unit’s 
geometry lies entirely within a larger unit’s boundary, an undirected edge is created 
between the smaller and the larger. Formally, for smaller unit s and larger unit l:

s 2 l) ðs! lÞ and ðl! sÞ (1) 

Therefore, these cross-level connections enable vertical information transfer, allow
ing the GNN to model multi-scale interactions.

Table 1. List of OA- and LSOA-level variables used in the study.

Spatial level Dataset Variables Mean
Standard  
deviation

LSOA England IoD Barriers to Housing and Services 31.43 9.80
Living Environment 28.88 11.03
Multiple Deprivation 21.28 10.93

Google Street  
View

Sidewalk 0.35 0.24
Building 0.83 0.50
Road 0.97 0.89
Terrain 0.11 0.22
Greenery 0.59 0.50

OpenStreetMap Road Density 0.77 0.39
Building Density 0.58 0.31

OA LOAC variables Ownership or shared ownership 0.82 0.12
Social rented 0.58 0.27
Private rented 0.73 0.13
Occupancy rating of rooms: þ1 or more 0.73 0.09
Occupancy rating of rooms: −1 or less 0.51 0.18
Standardised Disability Ratio 0.78 0.05
Provides no unpaid care 0.77 0.08
2 or more cars or vans in household 0.62 0.20
Highest level of qualification: Level 1, 2 or Apprenticeship 0.56 0.14
Highest level of qualification: Level 3 qualifications 0.52 0.08
Highest level of qualification: Level 4 qualifications or above 0.69 0.14
Job Type: Part-time 0.77 0.06
Job Type: Full-time 0.84 0.05

Mean and standard deviation are reported to indicate the central tendency and dispersion of each covariate prior to 
modelling, providing context for the scale of the input features.
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By combining node features, target labels (categorical labels or numerical values) 
for the smaller units, adjacency edges at each scale, and membership edges across 
scales, we obtain a heterogeneous graph structure suitable for hierarchical analysis. 
Formally, the graph contains:

� Node sets:
1. Xlarge 2 R

Nlarge�dl : feature matrix for larger spatial units;
2. Xsmall 2 R

Nsmall�ds : feature matrix for smaller spatial units;
3. ysmall 2 Z

Nsmall : target labels for smaller spatial units.
� Edge sets:

1. Spatial adjacency among larger units (horizontal dependency);
2. Spatial adjacency among smaller units (horizontal dependency);
3. Membership edges linking smaller to larger units and vice versa (vertical 

dependency).

The membership links are handled as one relation type with two directions; they allow 
information to flow ‘upwards’ and ‘downwards’ between scales but share the same 
learnable parameters for this relation. As such, this two-tiered graph captures the 
nested hierarchy of census tracts and local spatial dependencies, enabling a structured 
representation of urban spatial systems. It forms the input to the proposed SR-BHGNN 
described in Section 3.2.

3.2. Spatially regularised Bayesian heterogeneous graph neural network

The proposed framework operates on the above-mentioned heterogeneous hierarchical 
graph G ¼ ðVL [ VS, EÞ; in which VL denotes the set of larger census tract units and VS 

denotes the set of smaller census tract units. Each node v 2 VL [ VS may possess a 
feature vector xv; with dimension possibly differing by node type. In particular, two 
configurations are considered for the smaller units: one in which each smaller unit car
ries its vector of attributes and another in which the feature matrix for smaller units is 
effectively empty, thereby relying on adjacency- and membership-based message 
passing for representation learning. Adjacency edges in E capture spatial contiguity 
within each census tract scale, while membership edges link smaller units to the larger 
units containing them and vice versa.

To handle this multi-scale structure, the model employs a heterogeneous graph 
neural network (Fey and Lenssen 2019), wherein each edge type (adjacency or mem
bership) has its own message-passing transformations. Specifically, let hðlÞv ¼ xv be the 
initial features of node v. At layer l þ 1; the updated embedding hðlþ1Þ

v is computed by 
aggregating messages from the neighbour set NðvÞ; which may include nodes of the 
same type (adjacent) or different types (membership). For each edge relation r, a train
able weight matrix or attention mechanism transforms the incoming messages. 
Denoting � as an aggregation operator (e.g. mean aggregator in this paper) and rð�Þ
as a non-linear activation:

hðlþ1Þ
v ¼ r WðlÞr hðlÞv k �

u2N rðvÞ
hðlÞu

� �
þ bðlÞ

� �
(2) 
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where N rðvÞ is the set of neighbours of v under relation r, and k denotes a concaten
ation of embeddings. Because each edge type (within-OA, within-LSOA, and member
ship links) is parametrised separately, SR-BHGNN does not force a single 
neighbourhood size across the whole graph. Instead, the model can learn one pattern 
of message passing within a level and another for cross-level connections. In practice, 
this means it can decide how strongly to propagate information among nearby units 
within the same scale and how much to transfer between scales.

In addition to being heterogeneous, the model is Bayesian. Each weight matrix WðlÞr 

and bias bðlÞ is drawn from a prior distribution, often assumed Gaussian, of the form:

WðlÞr � Nð0, a2IÞ, bðlÞ � N ð0, b2IÞ (3) 

where a2, b2 > 0 are fixed hyperparameters. Rather than treating these parameters as 
point estimates, variational inference approximates their posterior distributions, thus 
capturing parameter uncertainty. We define a variational distribution q/ðhÞ over all 
model parameters h; typically taken as a fully factorised Gaussian:

q/ðhÞ ¼
Yjhj

i¼1

Nðhi; li, r
2
i Þ (4) 

where / ¼ fli, rig are the learnable variational parameters, which allows for scalable 
Bayesian inference using the reparameterisation trick during training (Kingma et al. 
2015). Unlike full posterior sampling techniques such as Markov Chain Monte Carlo 
(MCMC), which are computationally prohibitive for deep neural models on large spatial 
graphs, variational inference offers a scalable, optimisation-based framework suitable 
for large spatial graphs with complex architectures (Blundell et al. 2015, Blei et al. 
2017, Zhang 2019).

After several layers of message passing, the model produces an output vector zv for 
each node v 2 VS; which can be interpreted according to the nature of the prediction 
task. In classification settings, a softmax function is applied to obtain predicted class 
probabilities:

Pv ¼ softmaxðzvÞ (5) 

and the likelihood of the observed label yv is given by a categorical distribution. In 
regression tasks, by contrast, the output zv can represent the mean of a continuous 
distribution, such as a Gaussian. Denoting all model parameters by h; the likelihood of 
the observed outcome yv is defined as:

pðyvjzv , hÞ ¼
CatðsoftmaxðzvÞÞ, classification,

Nðyvjzv , r2Þ, regression,

(

(6) 

where r2 may be fixed or learned as a function of h: In this way, the model provides 
a unified Bayesian framework for discrete and continuous prediction tasks on hierarch
ical spatial graphs.

To promote smoothness in the predictions among spatially adjacent smaller units, 
the model includes a spatial regularisation term that penalises large discrepancies in 
predicted target probabilities. Concretely, if Pv is the predicted target probability vec
tor for node v 2 VS; and ES � E is the set of adjacency edges among the smaller units, 
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then the regularisation term is defined by

XspatialðhÞ ¼ k
X

ðv, wÞ2ES

k Pv − Pwk
2 (7) 

where k > 0 is a regularisation weight and a hyperparameter in the model. Note that 
such a regularisation term is external to the Bayesian posterior and does not consti
tute a prior over parameters. It directly penalises differences in model outputs across 
neighbouring areas to encourage spatial coherence.

The total objective function thus merges the log-likelihood for all observed labels 
(under the Bayesian parameter priors) with the penalty on spatial inconsistency 
defined above. Specifically, again, let q/ðhÞ be the variational distribution over model 
parameters h; and let pðhÞ be the prior. Then, the negative evidence lower bound 
(ELBO) is

LELBOðq/Þ ¼ Eq/ðhÞ − log pðfyvgjhÞ½ � þ KL q/ðhÞ k pðhÞ
� �

(8) 

where pðfyvgjhÞ is the product of the individual likelihoods for all observed yv: KL 
denotes the Kullback–Leibler divergence (Kullback and Leibler 1951). Accordingly, the 
overall training loss is given by

L ¼ LELBOðq/Þ þ XspatialðhÞ (9) 

During training, a stochastic variational inference procedure estimates q/ðhÞ by 
minimising L; thus balancing good predictive performance with uncertainty quantifi
cation and spatial consistency.

At test time, the approximate posterior over model parameters can be sampled 
multiple times to generate a set of output vectors fzðsÞv g

S
s¼1 for each node v 2 VS:

These outputs are then used to compute predictive summaries. In classification set
tings, softmax is applied to each sample to obtain class probabilities, and the final pre
dictive distribution is obtained by averaging:

P̂v ¼
1
S

XS

s¼1

softmaxðzðsÞv Þ, (10) 

with the sample variance across fzðsÞv g or fP̂
ðsÞ
v g serving as a measure of predictive 

uncertainty. In regression settings, the mean prediction is taken as the average of the 
sampled outputs,

ŷv ¼
1
S

XS

s¼1

zðsÞv , (11) 

while the sample variance provides an estimate of uncertainty in the predicted value. 
Such a capacity to quantify uncertainty is particularly beneficial in small-area estima
tion contexts, where observations at finer spatial resolutions may be sparse, noisy, or 
altogether unavailable.

Section 4 illustrates the model’s practical utility by applying it to two empirical 
examples, highlighting its flexibility and robustness in real-world urban analytics.
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3.3. Model implementation

The proposed SR-BHGNN is implemented in Python using the PyTorch (Ansel et al. 
2024) and PyTorch Geometric (Fey and Lenssen 2019) libraries. The heterogeneous 
graph data structures, along with adjacency and membership edges, are constructed 
using PyTorch Geometric’s built-in mechanisms for managing multi-type node and 
edge relations. To facilitate Bayesian inference, the implementation employs Pyro 
(Bingham et al. 2019), which provides a flexible interface for defining priors, variational 
guides, and stochastic variational inference routines.

Regarding hyperparameters, our experiments suggest that a heterogeneous GAT- 
based message-passing block with one convolutional kernel per relation type (see 
Section 3.1) offers a good balance between model capacity and computational effi
ciency. This constitutes one message-passing layer in the sense of GNN depth, but 
with distinct weights learned for each edge type. The outputs are then passed 
through Bayesian linear layers with ReLU activations to produce hidden representa
tions, and finally, a Bayesian linear output layer for OA-level predictions. In our experi
ments, the hidden dimension is set to 16, which provides a good compromise 
between capacity and speed, although this choice may be adjusted as data complexity 
varies. We typically choose a learning rate of 0.001 with ClippedAdam as the optimiser 
to stabilise training when sampling from posterior distributions. The strength of the 
spatial regularisation term k is tuned by comparing validation performance on a small 
grid of values (e.g. f0:01, 0:05, 0:1, 0:5, 0:9g; empirical results indicate that a moderate 
level of spatial smoothing of k ¼ 0:1 best controls local outliers without eroding fine- 
grained patterns for the regression task and k ¼ 0:5 for the classification task. For con
tinuous outcomes (e.g. population density), as in regression tasks, we adopt a normal 
likelihood with a Bayesian linear output layer. Each forward pass samples parameters 
from the approximate posterior, enabling robust uncertainty quantification over pre
dicted means. All training protocols use the Evidence Lower Bound (ELBO) as the 
objective function, with model convergence monitored by the evolution of ELBO and 
accuracy metrics on a held-out validation set, and early stopping applied with a 
patience of 200 epochs. To ensure full reproducibility, a fixed random seed (42) is set 
for all experiments and documented in the accompanying code repository.

4. Empirical analysis

This section demonstrates the proposed SR-BHGNN on two real-world tasks within a 
common urban setting. Section 4.1 outlines the data processing pipeline for Greater 
London to assemble multi-level spatial units, socio-economic indicators, and physical 
environment descriptors. Section 4.2 presents our approach to population estimation 
at finer spatial scales, comparing predictive performance with four baselines and under 
different data availability scenarios, demonstrating the effectiveness of the proposed 
spatial regularisation term in the model. Section 4.3 then extends the framework to air 
pollution prediction, illustrating how the model handles the predictions of environ
mental variables and highlighting the practical usefulness of uncertainty quantification 
and its derived insights. Through these two complementary examples, we showcase 
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the flexibility of the method in addressing diverse small-area estimation and forecast
ing challenges.

4.1. Data processing

This study focuses on Greater London as an empirical testbed, owing to its well- 
established census tract hierarchy and the availability of diverse socio-economic and 
spatial datasets. As demonstrated in Figure 1, we adopt two nested census tract levels: 
LSOAs and OAs, with each OA spatially contained within a single LSOA. Such a nested 
arrangement is conducive to evaluating the proposed hierarchical modelling frame
work, as it allows information flow between coarser (LSOA) and finer (OA) scales. The 
LSOAs and OAs used in this research are based on UK Census 2021 geographies 
(Office for National Statistics 2021).

The primary target variables at the OA scale are total population density and 
annual average PM 2:5 concentrations. The OA-level population data is obtained from 
the 2021 UK Census provided by Office for National Statistics (2021). Although OA 
populations are bounded by design, each area must contain a minimum of 100 resi
dents, with a target average of approximately 300; substantial variation still occurs, 
particularly in diverse urban environments such as London. Despite such design con
straints, population density aggregated at OA levels remains a critical modelling tar
get, as they directly inform resource allocation, service delivery, and infrastructure 
planning at the neighbourhood level (Singleton and Longley 2024, Wyszomierski et al. 
2024). In the meantime, the raw data comprise PM 2:5 concentrations and exposure 
values from 2013 (Greater London Authority 2017b), originally aligned with the 2011 
OA boundaries. Since our overall framework relies on the 2021 UK census geographies, 
we first rebased the pollutant dataset to the newer OA geographies by overlaying 
maps and interpolating missing or mismatched values using an official lookup table. 
Where direct matches were unavailable, we performed qualitative checks on boundary 
overlaps and used domain expertise to reconcile minor discrepancies; thus, we 
ensured consistency across all spatial layers. Both values (population and PM 2:5) repre
sent the ‘ground truth’ for model evaluation and are used for both training and test
ing purposes. In the model testing, we simulate a realistic use case where OA-level 
target variables are only available for a subset of areas. In each task, the Output Areas 
were randomly partitioned into 70% training and 30% held-out test sets, a protocol 
widely used in GeoAI applications (Zhu et al. 2020, Wang and Zhu 2024, Liu et al. 
2025a, 2025b); a spatial block cross-validation is presented in Appendix B to assess 
robustness to spatial leakage. Our model and the baseline models (see Section 4.1) are 
trained exclusively on the training OAs and evaluated on the held-out test set. Such a 
set-up mimics scenarios where fine-grained target variables are known for some small 
areas (e.g. pilot surveys, selectively monitored locations) and need to be estimated 
elsewhere based on aggregated data and structural priors.

A summary of the input data used at each level is presented in Table 1. All varia
bles described in the table are used consistently in both case studies; only the out
come variable differs (population in Case Study 1 and PM 2:5 in Case Study 2, see 
subsections below). At the LSOA level, we compile several node attributes to capture 
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both the socio-economic and physical dimensions of urban life. First, deprivation scores 
(Barriers to Housing and Services, Living Environment, and Multiple Deprivation from the 
England Index of Multiple Deprivation (Trust for London 2019) (rebased to 2021 UK 
census geographies) and average housing prices between 1995 and 2017 (Greater 
London Authority 2017a) are included to reflect spatial variations in socio-economic 
well-being. These measures are vital for population and environmental modelling as 
highly deprived areas often exhibit different demographic profiles, health outcomes 
and housing conditions.

Second, we incorporate urban morphological indicators derived from 230,971,036 
Google Street View (GSV) images, processed through semantic segmentation using the 
Mask2Former model (Cheng et al. 2022) pre-trained on the Mapillary Vistas Dataset 
(Neuhold et al. 2017, Ito et al. 2025). All imagery was accessed via the Google Street 
View Static API under the research Terms of Service (Google LLC 2025) as of 13 
February 2025. For each street segment, we utilised all available images dated 2019– 
2025 within London; no additional subsampling was applied beyond the availability of 
the API. GSV imagery provides ground-level perspectives that capture a granular snap
shot of the built environment, including subtle details and variations often overlooked 
by remote sensing or aggregated data (Biljecki and Ito 2021, Fan et al. 2023). By sys
tematically identifying features such as building façades, terrain, greenery, sidewalks, 
and roads, these derived data (i.e. proportion of pixels based on the image segmenta
tion results) which were mean-pooled to the census tracts used in this study and 
enrich the model’s understanding of how local urban form correlates with both popu
lation distributions and air pollution patterns, reflecting everyday physical conditions 
in a way that overhead imagery (e.g. remote sensing) may not.

Finally, we measure road and building density using OpenStreetMap (OSM) since 
transport infrastructure and urban compactness influence human mobility, exposure 
levels, and resource allocation (Shi et al. 2016, Li et al. 2023a, Cao and Su 2024). OSM 
features were extracted as of 3 March 2025. For London, OSM provides reasonable 
coverage for the structural indicators used here (e.g. road length/density, built-form 
proxies) (Biljecki et al. 2023), and we therefore use it as is. Nevertheless, as OSM is a 
crowd-sourced dataset whose completeness and positional accuracy can vary by fea
ture type and location, we acknowledge any residual omissions or inaccuracies as a 
potential source of uncertainty and a limitation of our analysis. The target variables 
(population and PM 2:5) and predictor variables are aligned as closely as possible in 
time. Because the built-form and street-network indicators used here are relatively sta
ble over time (Clifton et al. 2008, Barrington-Leigh and Millard-Ball 2020, T€umt€urk 
et al. 2024), we expect limited impact from minor temporal mismatches, which we 
explicitly note as a limitation of the analysis (see Discussion). Yet, a comprehensive 
audit of completeness and temporal alignment is beyond the scope of this paper.

For the OA level, as shown in Figure 1, we examine two scenarios reflecting differ
ent data availability conditions. In the first scenario, we exploit census-derived variables 
(e.g. proportions of owner-occupied or socially rented dwellings) and socio-economic 
indicators (health and education metrics) collected from the London Output Area 
Classification (LOAC, a geodemographic that summarises the built and population 
characteristics in London) (Singleton and Longley 2024) and 2021 UK Census statistics 
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(Office for National Statistics 2021). These finer-grained attributes offer additional 
insight into local demographic and service-related factors that influence population 
estimates and air pollution outcomes. In the second scenario, OAs have no node- 
specific features beyond their adjacency and membership connections, allowing the 
model to rely solely on structural relationships and LSOA-level signals to infer local 
characteristics. This approach assesses how effectively the hierarchical GNN can com
pensate for missing fine-scale covariates. Testing the model under both scenarios 
quantifies how direct OA features enhance predictive performance or whether struc
tural embedding and Bayesian uncertainty estimates suffice when smaller-unit data 
are unavailable.

It is worth noting that, given the broad array of socio-economic, morphological, 
and infrastructural variables being integrated, some degree of correlation among these 
features is inevitable. For instance, areas scoring high on certain deprivation measures 
may also exhibit distinctive GSV-based characteristics (e.g. fewer green spaces or 
denser building façades). Rather than eliminate overlapping predictors, we retain them 
to exploit the full representational capacity of the model and to reflect the complexity 
of real-world environments. In particular, the hierarchical GNN’s ability to learn non- 
linear relationships and partial dependencies often reduces the risk of adverse effects 
from multicollinearity (Vatcheva et al. 2016, Gao et al. 2023). Meanwhile, the Bayesian 
inference framework provides posterior estimates that can reveal how these correlated 
features jointly contribute to the model’s uncertainty and predictions.

These LSOA- and OA-level inputs compose a multi-scale dataset reflecting socio- 
economic, morphological, and infrastructural characteristics across Greater London. 
After integrating the data into the LSOAs and OAs, Queen contiguity is applied to con
struct spatial graphs from the polygon data within their scales. By integrating multiple 
data sources at different granularities, this design enables a robust evaluation of the 
proposed framework under realistic conditions of partial or missing covariates at finer 
scales. Subsequent sections detail how the hierarchical graph is used to facilitate popu
lation estimation and air pollution prediction, illustrating the model’s versatility in 
addressing diverse urban analytics tasks.

4.2. Case study 1: population estimation

Accurate population estimates at fine spatial scales are essential for a variety of urban 
policy and planning tasks, including service provision, infrastructure development, and 
emergency resource allocation (Sun 1971, McDonald 1989, Gottdiener et al. 2015, 
Zoraghein and Leyk 2018, Sinha et al. 2019, Schnake-Mahl et al. 2020, Singleton et al. 
2020). However, conventional census data tend to be aggregated at coarser census 
tract levels and updated infrequently, thereby limiting their value for real-time or local
ised decision-making. To address these constraints, we apply the proposed SR-BHGNN 
to estimate the population at the Output Area (OA) level, illustrating its practical rele
vance and methodological advantages when smaller-scale data are sparse or inconsist
ent. Moreover, the OA population distribution in Greater London, similar to many 
other urban settings (Newbold 2021), is markedly imbalanced (skewness � 47.01, kur
tosis � 4603.82), such that most OAs have modest resident density while a small 

14 P. LIU ET AL.



subset hosts disproportionately large populations. This extreme imbalance introduces 
considerable challenges for predictive modelling. In the following analysis, we there
fore evaluate how effectively the SR-BHGNN, alongside several baselines, handles this 
demanding yet realistic scenario of small-area population estimation.

We examine two formulations of the population task, classification and regression, 
under two OA feature settings: with OA-level covariates (SR-BHGNN_OACensus) and 
without them (SR-BHGNN_OADummy). For classification, continuous population values 
are binned into three categories via Jenks’ natural breaks (Jenks 1967); regression dir
ectly predicts continuous densities.

We select baselines that (i) represent canonical families familiar to the small-area 
estimation community, (ii) are widely used and reproducible with standard implemen
tations, (iii) operate on lattice/census tract units without bespoke engineering, (iv) sup
port both continuous and categorical targets (or have straightforward adaptations), 
and (v) scale to city-wide experiments. Accordingly, we benchmark SR-BHGNN against 
five baselines and include one ablation:

� Random Forest (RF). A strong, non-parametric baseline repeatedly shown to per
form well in spatial interpolation and downscaling while remaining 
implementation-agnostic and robust (Sekuli�c et al. 2020, Maxwell et al. 2021). Its 
popularity and reproducibility make it an appropriate off-the-shelf comparator. We 
use the default implementation in Pedregosa et al. (2011) with 500 trees and no 
feature selection, trained and tested on the same OA-level observations as the 
other models.

� Geographical Random Forest (GRF). We include a geographically weighted RF 
(Georganos and Kalogirou 2022) as a spatially adaptive, non-hierarchical baseline. 
For each prediction location, a local random forest is estimated using the training 
data, with sample weights determined by a Gaussian distance–decay kernel. The 
bandwidth is selected by cross-validation on the training set over a grid tied to the 
empirical distance distribution. For computational efficiency, each local fit is 
restricted to the k-nearest training units (KD-tree; k ¼ 200). All other hyperpara
meters mirror the global RF baseline (500 trees). This procedure yields spatially 
localised, non-parametric predictions for both regression and classification tasks.

� Graph Attention Network (GAT). A state-of-the-art single-scale graph neural baseline 
(Velickovic et al. 2017). Because our contribution in this paper advances both inter
polation and hierarchical GNN design, GAT isolates the added value of explicit hier
archy and Bayesian inference, rendering it an ideal baseline comparison.

� GAT-Concat (naïve multi-scale). To ensure a fair comparison, we include a ‘GAT- 
Concat’ baseline that injects LSOA-level features into each OA node via simple 
concatenation, allowing this model to access the same multi-level information as 
SR-BHGNN without explicitly modelling the hierarchical structure; thus, testing 
whether feature fusion alone is sufficient. For each OA within an LSOA, we allocate 
LSOA-level features proportionally by OA area share and concatenate them with 
OA features – thus incorporating multi-scale information without explicit member
ship edges. In Appendix A, we additionally report two analogous baselines, RF- 
Concat and GRF-Concat, which extend the RF and GRF models with the same 
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concatenated OA-LSOA feature set. These comparisons assess whether simple data 
downscaling, without hierarchical message passing, can aid in prediction tasks.

� Spatial Hierarchical Bayes (Spatial HB). A well-established workhorse for small-area 
estimation that pools information via hierarchical structure and encodes lattice 
dependence with conditional autoregressive (CAR) priors (Rao and Molina 2015, 
Whitworth et al. 2017, Wall 2004). Following Wikle et al. (1998), we implement a 
Bayesian small-area model that transfers information from LSOAs to OAs, with a 
CAR prior over adjacent OAs and LSOA-level features as group-level predictors. 
Inference uses Gibbs sampling (10,000 iterations; 2,000 burn-in) (Geyer 1992), based 
on the same OA covariates as RF and GAT. For classification, we adapt a hierarch
ical ordinal probit structure (Rampichini and Schifini d’Andrea 1998) to enable 
probabilistic categorisation.

� BHGNN (ablation). A heterogeneous GNN with Bayesian parameter inference with
out the spatial regularisation term. Allowing OA-level features, this ablation isolates 
the specific effect of the spatial smoothness constraint relative to SR-BHGNN.

In Appendix A, we further compared the model with two additional models (a 
Besag–York–Molli�e model and a Graph Laplacian–regularised ridge), which are com
monly used in small-area estimations. Although our comparative evaluation focuses on 
baselines introduced above, we acknowledge that other established approaches, such 
as spatial regression (Chi and Zhu 2008), dasymetric modelling (Briggs et al. 2007), 
and kriging/Gaussian process (GP) interpolation (Oliver and Webster 1990, Bajjali 
2023), are widely used and have advanced small-area estimation. While these 
approaches offer well-documented advantages, they are typically predicated on spe
cific assumptions, such as linear predictor–response relationships or stationary covari
ance structures defined on continuous supports, and in many cases require ancillary 
data sources (e.g. high-resolution land-use information or dense monitoring networks) 
(Risser and Calder 2015, Tong et al. 2022). In highly heterogeneous urban contexts 
such as Greater London, these assumptions and data dependencies can constrain their 
applicability to categorical outcomes on irregular census tract units and to explicitly 
hierarchical problem settings. For this reason, in the present study, we adopt the 
Spatial HB model as the canonical hierarchical–lattice comparator for small-area esti
mation, rather than as a proxy for kriging/GP or SAR/SEM families, which operate on 
different spatial supports and embody distinct dependence structures. The proposed 
SR-BHGNN is intended to complement this tradition by relaxing linearity and stationar
ity assumptions and by jointly modelling heterogeneous features and hierarchical spa
tial dependencies within a single, uncertainty-aware framework.

Table 2 presents the comparative results. In the classification task, SR-BHGNN_ 
OACensus achieves the highest Accuracy (0.85) and F-score (0.81), supported by strong 
Recall (0.72) and Precision (0.92). Even without access to detailed OA-level features, 
SR-BHGNN_OADummy remains highly competitive (Accuracy ¼ 0.74, F-score ¼ 0.62), 
illustrating the importance of spatial regularisation and hierarchical reasoning even 
when fine-grained covariates are absent.

In contrast, RF and GAT baselines, which operate solely on flat OA-level inputs or 
simple adjacency structures, yield substantially lower Accuracy (�0.66) and F-score 

16 P. LIU ET AL.



(�0.58). GAT-Concat, which naively combines multi-scale features through simple con
catenation without modelling their structural dependencies, performs markedly worse 
(Accuracy ¼ 0.33, F-score ¼ 0.30). The similarly poor results of RF-Concat and GRF- 
Concat, as shown in Appendix Table A1 (RF-Concat: Accuracy ¼ 0.49, F-score ¼ 0.46; 
GRF-Concat: Accuracy ¼ 0.39, F-score ¼ 0.33), further reinforce that merely injecting 
additional higher-level features, without representing their hierarchical relationships, 
tends to degrade predictive performance by introducing noise and obscuring the 
distinction between local and contextual patterns. Spatial HB achieves moderate classi
fication performance (Accuracy ¼ 0.58, F-score ¼ 0.57), confirming the value of cross- 
scale information pooling. Yet, it lacks the flexibility and adaptability enabled by 
learned, non-linear hierarchical embeddings in SR-BHGNN. Finally, BHGNN, without 
explicit spatial regularisation, underperforms across all metrics, with an Accuracy of 
0.76 but critically low Precision (0.25), Recall (0.33), and F-score (0.28), suggesting it 
struggles to resolve the imbalanced and spatially imbalanced population distributions 
present in the data.

For the regression task, SR-BHGNN_OACensus again leads, achieving an R2 of 0.58. 
Even using only dummy OA features, SR-BHGNN_OADummy secures an R2 of 0.41, out
performing Random Forest (R2 ¼ 0:12), GRF (R2 ¼ 0:16), and GAT (R2 ¼ 0:18), both 
with RMSEs exceeding 14,000. GAT-Concat again demonstrates poor performance, con
firming that naive feature fusion without hierarchical structuring fails to capture the 
complexity of spatial population patterns. Although spatial HB captures some cross- 
scale structure (R2 ¼ 0:33; MAPE ¼ 51.07%), it is ultimately less expressive and less 
accurate than the graph-driven, Bayesian approach. BHGNN deteriorates significantly 
in regression (R2 ¼ 0:02; RMSE ¼ 22378.90, MAPE ¼ 163.47%), reinforcing the need 
for spatial smoothness and hierarchical integration to model highly imbalanced, spa
tially heterogeneous population data effectively.

To further assess the spatial validity of the population estimates, we analysed the 
spatial autocorrelation of model residuals using Moran’s I statistic (Moran 1950), as 
illustrated in Figure 2. Clear distinctions emerge among the models regarding the spa
tial distribution of their residuals. The SR-BHGNN demonstrates minimal spatial cluster
ing (Moran’s I¼ 0.08, p < 0:01), indicating a more spatially random pattern of 
prediction errors. In sharp contrast, the Random Forest residuals exhibit substantial 
spatial autocorrelation (Moran’s I¼ 0.78), suggesting systematic over-predictions (high- 

Table 2. Performance comparison of population estimation methods across classification and 
regression tasks.

Metric
SR-BHGNN_ 
OACensus

SR-BHGNN_ 
OADummy BHGNN RF GRF GAT GAT-Concat Spatial HB

Classification
Accuracy 0.85 0.74 0.76 0.61 0.66 0.63 0.33 0.58
Recall 0.72 0.62 0.33 0.55 0.57 0.58 0.27 0.58
Precision 0.92 0.61 0.25 0.60 0.59 0.59 0.29 0.57
F-score 0.81 0.62 0.28 0.57 0.57 0.58 0.30 0.57

Regression
R2 0.58 0.41 0.02 0.12 0.16 0.18 0.09 0.33
RMSE 7234.19 10083.26 22378.90 14681.24 14892.01 14319.02 19076.11 12160.81
MAPE 39.78% 45.28% 163.47% 107.26% 105.26% 101.16% 124.81% 51.07%

SR-BHGNN refers to the proposed Spatially Regularised Bayesian Heterogeneous Graph Neural Network with either 
OA census features (OACensus) or dummy features (OADummy).
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high clusters) across outer boroughs and under-predictions (low-low clusters) concen
trated within inner boroughs. Intermediate levels of spatial autocorrelation are 
observed for GAT (0.52), BHGNN (0.50), GRF (0.35), and Spatial HB (0.38), each showing 
noticeable residual clusters. Notably, the SR-BHGNN_OADummy variant, which 
excludes detailed OA-level features, exhibits increased spatial autocorrelation (Moran’s 
I¼ 0.23), underscoring the importance of incorporating detailed, multi-scale informa
tion. These results reinforce the advantage of employing spatial regularisation and 
hierarchical message passing in capturing complex urban structures, ensuring more 
robust and unbiased population estimations in metropolitan contexts such as London.

Although classification and regression metrics confirm that the proposed SR-BHGNN 
outperforms its non-regularised counterpart (BHGNN) in handling highly imbalanced 
population data, it is equally illuminating to visualise and analyse the node embed
dings learned by each model. Specifically, we extract the final hidden-layer representa
tions of all OAs from both SR-BHGNN and BHGNN, then cluster those embeddings via 
the K-Means clustering method (K ¼ 3) and map each OA’s cluster membership. As 
shown in Figure 3(a), the clustering derived from the SR-BHGNN embeddings exhibits 
a pronounced spatial grouping: OAs belonging to the same cluster tend to form con
tinuous patches rather than appear randomly scattered. This pattern suggests that the 
model’s spatial regularisation effectively encodes adjacency constraints in the latent 
space, encouraging physically contiguous zones, particularly those with similar demo
graphic or environmental characteristics, to have embeddings that lie closer together. 
By contrast, the BHGNN embeddings shown in Figure 3(b) produce clusters that 
appear largely dispersed over Greater London, echoing the weaker performance 
observed in the model’s classification and regression outcomes. Many of the high- 
population outliers (shown in earlier sections) fail to integrate smoothly into their 

Figure 2. Spatial distribution of the residuals of each model produced in the regression task. 
Cross-model visual comparison (SR-BHGNN vs baselines) of the distribution patterns of residuals, 
with red areas indicating over-prediction and blue areas indicating under-prediction. Moran’s I val
ues (reported in Section 4.2) quantify the global spatial autocorrelation of residuals. At the same 
time, the LISA maps highlight statistically significant local clusters: high–high (red) and low–low 
(blue) clusters indicate spatially correlated over- and under-predictions, respectively, whereas grey 
areas denote non-significant local associations. All maps share the same legend, north arrow, and 
scale bar for ease of comparison.
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surrounding areas, reflecting the absence of a mechanism to ‘pull’ nearby nodes closer 
in representation space. To further examine these differences, we applied t-SNE (Van 
der Maaten and Hinton 2008) to each model’s embeddings, reducing their dimension
ality to two dimensions. The t-SNE plots, as shown in Figure 3, reinforce that SR- 
BHGNN embeddings display markedly higher spatial autocorrelation, as quantified by 
a bivariate Moran’s I of 0.53 (p < 0:01) (Lee 2001), indicating that physically adjacent 
OAs also cluster together in latent space.

The results presented in this subsection underscore the value of combining hier
archical graph structures, Bayesian parameter inference, and spatial regularisation in 
small-area population estimation. SR-BHGNN accommodates missing fine-scale features 
and manages a heavily imbalanced distribution more effectively than baseline 
approaches by systematically leveraging adjacency and membership relationships. In 
the next section, we will present another empirical analysis on air pollution prediction 
and demonstrate how uncertainty quantification can provide insights for a better 
understanding of urban environments.

4.3. Case study 2: predicting air pollution

Reliable, fine-scale estimates of air pollutant concentrations are crucial for urban plan
ning, public health interventions, and policy-making, particularly in large and densely 
populated cities such as London (Walton et al. 2015, Maltby 2022). In this section, we 
extend the SR-BHGNN (with OA-level features) to predict PM 2:5 exposure (as intro
duced in Section 4.1) at the OA level, thereby illustrating the model’s capacity to han
dle environmental data and facilitating uncertainty analysis for informed decision 
support. Although pollution levels are frequently recorded at specific monitoring sta
tions, recent work shows that socio-economic and urban morphological variables can 
strongly influence pollutant generation, dispersion, and human exposure patterns (Rao 
et al. 2017, Yuan et al. 2024). Hence, we leverage LSOA-level socio-economic and mor
phological data to capture broader neighbourhood characteristics, while OA-level 

Figure 3. Comparison of spatial clustering in OA-level embedding clusters derived from (a) SR- 
BHGNN and (b) BHGNN. Maps share the same legend, north arrow, and scale bar. Embeddings are 
clustered using k-means (k¼ 3) and visualised with consistent colour assignments across panels.
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census attributes provide finer-grained demographic and housing information pertin
ent to local emission sources and vulnerabilities. By combining these multi-scale 
inputs, the proposed method can learn how macro-level conditions and micro-level 
features jointly shape PM2:5 exposure, enabling accurate predictions and uncertainty 
estimates for air quality management.

Similar to the population classification experiment, we discretised the PM2:5 expos
ure measurements into three categories (low, median, and high) using Jenks’ natural 
breaks. The proposed SR-BHGNN model achieved strong classification performance, 
with an Accuracy of 0.81, a Precision of 0.78, a Recall of 0.80, and an F-score of 0.79. 
Beyond these classification metrics, we also assessed the quality of the model’s pre
dictive uncertainty using a multi-class generalisation of Continuous Ranked Probability 
Score (CRPS), a proper scoring rule widely used for probabilistic evaluation (Gneiting 
and Raftery 2007). As summarised in Table 3, SR-BHGNN outperformed all Bayesian 
baselines, achieving the lowest CRPS value (2.73), which indicates superior calibration 
of its predictive distributions. In contrast, BHGNN (without spatial regularisation) and 
Spatial HB yielded higher CRPS values of 4.91 and 3.87, respectively, suggesting less 
reliable uncertainty quantification. Notably, Spatial HB had better CRPS performance 
than BHGNN, despite showing lower accuracy and F-score. Such a discrepancy high
lights a key distinction between accuracy (which measures the correctness of discrete 
predictions) and CRPS (which evaluates the calibration and reliability of probabilistic 
predictions). A model can thus produce less accurate point predictions but still deliver 
better-calibrated uncertainty estimates, particularly in ambiguous or spatially heteroge
neous contexts, which are common in metropolitan areas like London. Hence, the 
results in Table 3 reinforce the importance of spatial regularisation within the hierarch
ical Bayesian GNN framework, as it simultaneously enhances classification accuracy 
and probabilistic calibration.

To further evaluate the spatial calibration of predictive uncertainty across London, 
we present both the distribution and spatial patterns of CRPS scores for the three 
models in Figure 5. The histogram (top left) shows that SR-BHGNN produces the low
est and most tightly distributed CRPS values, suggesting consistently well-calibrated 
predictions. In contrast, Spatial HB and BHGNN yield higher and more dispersed CRPS 
scores, reflecting weaker probabilistic calibration. The spatial maps further reveal that 
SR-BHGNN (top right) achieves lower uncertainty across most of the city, particularly in 
outer boroughs, while Spatial HB and BHGNN (bottom row) display widespread areas 
of elevated CRPS, indicating poor uncertainty reliability. Notably, even for SR-BHGNN, 
CRPS scores are relatively higher in several inner boroughs, which suggests that 
although the model performs well overall, capturing the probabilistic structure of 

Table 3. Performance comparison of probabilistic models for PM 2:5 prediction.
Model Accuracy F-score CRPS (#)

SR-BHGNN 0.81 0.79 2.73
BHGNN 0.73 0.68 4.91
Spatial HB 0.65 0.61 3.87
RF 0.63 0.60 N/A
GRF 0.66 0.62 N/A
GAT 0.70 0.67 N/A

Lower CRPS values indicate better-calibrated predictive distributions.
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complex central urban areas remains challenging, likely due to heightened socio- 
spatial heterogeneity. We examine such a spatial discrepancy in greater detail in the 
following paragraphs.

As shown in Figure 4 (left panels), the ground-truth PM 2:5 map (top left) is gener
ally well aligned with the model’s predicted labels (bottom-left). To better understand 
these results, we highlight on the right side the mismatches between the predicted 
and actual classes (top right, red areas) and the Bayesian model’s uncertainty values 
(bottom-right, darker blue indicating higher uncertainty). Both mismatch and uncer
tainty exhibit significant global spatial clustering (Moran’s I¼ 0.38 and 0.73, respect
ively, with p < 0:01), suggesting that errors and uncertain predictions are not 
randomly distributed but tend to cluster in specific regions (Figure 5).

Figure 6 provides additional insights into the spatial patterns of prediction mis
matches and uncertainty, as well as their potential social implications. In panel (a), 
overlaid major roads (blue) reveal that the model’s misclassification (red polygons) 
often cluster along key transport corridors. This finding suggests that relying solely on 
Queen contiguity to define adjacency in the graph may overlook crucial pathways of 

Figure 4. Observed and predicted OA-level PM 2:5 exposure classes, mismatches, and associated 
predictive uncertainty for the SR-BHGNN. All maps share the same north arrow and scale bar. 
Predicted exposure classes are derived from Jenks’ natural breaks (three classes: low, medium, 
high) based on observed PM 2:5 values. Mismatch maps highlight OAs where predicted and 
observed classes differ (red), while uncertainty maps use darker shades to denote higher predictive 
variance.
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pollutant dispersion and concentration, which are known to be strongly influenced by 
traffic flows, street canyons, and road network connectivity (Shahid et al. 2021, Stucki 
et al. 2024). As such, we did another extra experiment to substitute a road-based adja
cency definition for the default Queen contiguity in our heterogeneous GNN architec
ture resulted in a 5.32% increase in overall accuracy, alongside gains of 4.11% in 
precision, 3.98% in recall, and 5.01% in F-score, highlighting the tangible benefit of 
incorporating transportation networks more explicitly in PM 2:5 modelling.

Panel (b) highlights that high model uncertainty often coincides with the Inner 
London Lower Emission Zone (LEZ), pointing to the complex interplay of policy inter
ventions and built-environment dynamics (Bosher et al. 2007, Fanzini and Venturini 
2022). Despite the SR-BHGNN’s overall ability to capture urban morphological features 
and socio-demographic characteristics, policy-induced variations (e.g. restrictions on 
certain vehicle types, newer bus fleets) may introduce rapidly shifting emission profiles 
that the model cannot fully account for, especially if it lacks fine-grained transport 
data. Rather than representing a failure, these zones of elevated uncertainty under
score the need for policy-aware AI modelling (De Falco and Romeo 2025), where 
knowledge of regulatory measures informs data collection (e.g. monitoring station 
placement) and model design. From a data complexity perspective, the target variable, 
PM 2:5 concentration, exhibits lower variability within the LEZ, as indicated by a lower 

Figure 5. Comparison of Continuous Ranked Probability Score (CRPS) values across SR-BHGNN, 
Spatial HB, and BHGNN for PM 2:5 prediction. The top-left panel shows the distribution of CRPS 
scores; the top right and bottom panels show their spatial distribution. All maps share the same 
north arrow and scale bar. Note: each model’s CRPS map uses classification breaks tailored to its 
CRPS range (SR-BHGNN: 2.70–3.00; Spatial HB: 3.57–3.99; BHGNN: 4.47–5.29). These classification 
differences should be considered when visually comparing models.
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local coefficient of variation (d ¼ 0:28) compared to the rest of London (d ¼ 0:49). 
Such a result suggests that areas with lower target complexity may pose greater chal
lenges for the model because reduced variability can hinder the model’s ability to 
learn robust predictive patterns, which ultimately affects the model’s confidence when 
giving predictions.

Turning to panel (c), the bar chart reveals the proportion of mismatches by London 
Output Area Classification (LOAC) super group (Singleton and Longley 2024), indicat
ing that areas typified by ‘Social Rented Sector Families with Children’ (Group E) 
experience the highest error rate. This pattern aligns with broader research on envi
ronmental justice, wherein low-income or socially rented communities often face 
higher pollution burdens and greater uncertainty in exposure estimates (Champion 
et al. 2022, Jbaily et al. 2022). Finally, panel (d) shows correlations between uncertainty 
and various socio-economic variables, including housing tenure and educational 

Figure 6. Further investigation on prediction mismatches and uncertainty. For Figure (c), A: 
Professional Employment and Family Lifecycles; B: The Greater London Mix; C: Suburban Asian 
Communities; D: Central Connected Professionals and Managers; E: Social Rented Sector Families 
with Children; F: Young Families and Mainstream Employment; G: Older Residents in Owner- 
Occupied Suburbs. For Figure (d), v37: Ownership or shared ownership; v38: Social rented; v40: 
Occupancy rating of rooms: þ1 or more; v42: Standardised Disability Ratio; v43: Provides no unpaid 
care; v44: 2 or more cars or vans in household; v45: Highest level of qualification: Level 1, 2 or 
Apprenticeship; v46: Highest level of qualification: Level 3 qualifications; v47: Highest level of quali
fication: Level 4 qualifications or above; v48: Hours worked: Part-time.
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qualifications. Notably, a higher share of social renting (v38) correlates positively with 
uncertainty, while indicators of greater educational attainment or private car owner
ship relate negatively. Such correlations highlight the multi-dimensional drivers of 
model ambiguity: in some neighbourhoods, insufficient or fluctuating data on occu
pant behaviours and infrastructure may exacerbate uncertainty, whereas more stable 
or affluent communities tend to have better-captured emission patterns. These find
ings call for targeted data-collection efforts (e.g. improved road-based monitoring) and 
policy coordination that considers the heterogeneous nature of urban communities, 
ensuring that socially vulnerable populations are neither overlooked nor disproportion
ately impacted by modelling uncertainties.

The promising performance of SR-BHGNN in small-area population and PM 2:5 esti
mation tasks demonstrates the model’s effectiveness in integrating hierarchical struc
tures and spatial dependencies. For readers interested in a more detailed view of 
which predictors drive the model’s outputs, Appendix C presents scale-specific fea
ture-importance diagnostics for both case studies. These are provided as an interpret
ability aid only and are not discussed further in the main text. However, these 
analyses thus far have been confined to a two-tier census tract setup, that is, OAs 
nested within LSOAs. Urban systems, by contrast, often involve deeper hierarchies and 
broader regional influences. Hence, it raises an important question about whether the 
inclusion of additional census tract levels can further enhance prediction accuracy and 
uncertainty quantification. In what follows, we explore this question by extending our 
framework to incorporate a third census tract scale, Middle Layer Super Output Areas 
(MSOAs), and assess the incremental value it brings to fine-scale estimation tasks.

5. Unlocking the potential of hierarchy

Building on the motivation outlined at the end of Section 4.2, we now test a central 
premise in multi-level urban analytics: whether incorporating additional census tract 
tiers can provide valuable contextual information and thereby improve predictive per
formance and uncertainty estimation for lower-level geographies (Lloyd 2014). 
Extending the two-level design of the previous experiments (OAs nested within 
LSOAs), we integrate a third statistical geography scale – Middle Layer Super Output 
Areas (MSOAs) – as illustrated in Figure 7. Such a setup allows us to examine whether 
explicitly modelling deeper hierarchical structure enhances small-area population esti
mates beyond the gains achievable with two scales.

We draw upon the Climate Just (Climate Just 2014) project to incorporate 11 socio- 
environmental indicators at the MSOA level, covering a spectrum of vulnerability and 
adaptive capacity measures for flood and heat risks. These include, for instance, an 
area’s ‘sensitivity’ to flooding, ‘enhanced exposure’ to heat, and a ‘socio-spatial vulner
ability index’ for each hazard. In addition, we derive two supplementary metrics from 
OpenStreetMap (OSM) data, the aggregated number of health care facilities per MSOA 
and average addressable outdoor space (square metres) per MSOA, reflecting the 
accessibility of medical services and open spaces. Each MSOA is then assigned a vector 
of normalised features encompassing these 13 attributes. Similar to the experiment 
before, we define Queen contiguity edges among MSOAs to capture their adjacency 
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relationships. The result is a three-tiered hierarchical structure: MSOA � LSOAs � OAs;
where LSOAs remain nested within MSOAs, just as OAs remain nested within LSOAs. 
Using a methodology analogous to our earlier graphs, we link each LSOA node to 
exactly one MSOA node through ‘membership’ edges, thereby adding a new ‘MSOA 
$ LSOA’ layer to the heterogeneous graph. We then apply the SR-BHGNN to this aug
mented graph, training the model to predict population estimates at the OA level.

As shown in Figure 7, with the new MSOA layer, the classification task achieves an 
Accuracy of 0.88, a Recall of 0.76, a Precision of 0.91, and an F-score of 0.82. For the 
regression setting, the model attains an R2 value of 0.61, an RMSE of 7013.88, and a 
MAPE of 18.11%. These results show notable improvement over the two-tier hierarchy 
(OAs nested within LSOAs) described in Section 4.2. Such gains in the model’s per
formance may stem from the MSOA-level socio-environmental data, which supply 
broader contextual cues about infrastructural resources, climate vulnerabilities, and 
public health capacities, which are shaping residential patterns and community demo
graphics in ways not fully captured by LSOA or OA attributes alone.

However, the magnitude of these improvements, while meaningful, is not trans
formative. Such a result suggests that simply ‘stacking’ additional census tract layers 
or data sources does not guarantee dramatic leaps in performance. The benefit 
appears to hinge on the relevance and distinctiveness of the new indicators. In some 
instances, MSOA-level indicators may echo patterns already visible at the LSOA level 
(e.g. similar demographic correlations or environmental risks), which may lead to 
diminishing returns (McMillen 2010).

Nevertheless, the findings in this section illustrate how introducing an additional 
mid-level scale can enhance small-area analytics and further validate the SR-BHGNN as 
a framework capable of ‘unlocking the potential of scale’. By nesting MSOAs alongside 
existing LSOAs and OAs, the model gains deeper insights into broader regional con
texts, such as climate vulnerability and healthcare infrastructure, while still capturing 
localised patterns. Although simply stacking more census tract layers does not 

Figure 7. A combination of MSOA, LSOA and OA for the population estimation based on the SR- 
BHGNN framework.
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guarantee major performance leaps, the moderate yet meaningful improvements in 
classification and regression emphasise that multi-scale integration remains a promis
ing strategy for refining predictions and revealing cross-level interactions within com
plex urban environments (Weaver 2015).

6. Discussion

The SR-BHGNN proposed in this study aims to advance hierarchical spatial analytics 
and small-area estimation by seamlessly integrating multi-scale data into a unified, 
graph-based learning paradigm. Methodologically, the framework capitalises on recent 
developments in graph neural networks for non-Euclidean urban data representation 
(Liu and Biljecki 2022, Liu et al. 2025a), augmenting these with (i) Bayesian inference 
to capture parameter and predictive uncertainties, and (ii) heterogeneous message 
passing that respects both adjacency within each census tract layer and membership 
across scales (e.g. from OAs to LSOAs and vice versa). Such a design enables a prin
cipled means of ‘borrowing strength’ from higher-level aggregates when finer-scale 
observations are sparse, which is a core challenge in small-area problems (Banerjee 
et al. 2003, Rao and Molina 2015). By doing so, the SR-BHGNN differentiates itself from 
conventional single-level GNNs, which ignore hierarchical dependencies, and from 
standard hierarchical Bayesian models, which often impose strong parametric assump
tions and lack robust ways of learning complex, non-linear spatial relationships.

A central innovation lies in the spatial regularisation term embedded in the loss 
function. Inspired by Tobler’s First Law of Geography, which posits that spatial proxim
ity correlates with higher similarity in observed phenomena (Tobler 1970, Anselin 
2013), this term penalises large discrepancies in model predictions among adjacent 
areas unless strongly supported by local evidence. Empirical results across different 
experiments (e.g. population estimation, PM 2:5 pollution exposure) illustrate that omit
ting or weakening this regularisation leads to significant drops in model performance, 
particularly under data imbalance. For instance, in the population task, where a small 
number of OAs harbour disproportionately large resident densities, the lack of spatial 
smoothing compounds errors in outlier localities, degrading both classification accur
acy and regression metrics. In contrast, enforcing spatial coherence helps capture the 
underlying spatial processes governing population or pollution distributions and 
reduces the adverse impact of extreme values.

Meanwhile, an important empirical finding emerges from the baseline comparisons. 
When higher-level features are artificially downscaled to OAs using area-weighted allo
cation and then concatenated with the original OA features, performance deteriorates 
across all metrics, whether in a neural model (GAT-Concat) or a non-parametric one 
(RF-Concat, GRF-Concat). Such results suggest that the challenge in multi-scale small- 
area estimation is not merely the availability of additional data, but rather the absence 
of a structural mechanism to regulate how information should flow across scales. In 
contrast, the hierarchical message passing in SR-BHGNN explicitly captures these cross- 
scale dependencies, allowing the model to exploit multi-scale signals without over
whelming the representation space or introducing pseudo–fine-scale noise (Goodchild 
and Lam 1980, Wong 2020). Consequently, the consistently poor performance of 
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concatenation baselines serves as direct evidence against naïve feature fusion and pro
vides strong validation for the architectural principles underpinning SR-BHGNN.

In terms of policy relevance, the SR-BHGNN model offers actionable insights for 
local decision-makers by producing granular, uncertainty-aware estimates that support 
equitable and data-informed resource allocation. In the context of population volume 
estimation, the model enables city councils, public health agencies, and urban plan
ners to obtain reliable small-area estimates with credible intervals, which are crucial 
for planning services such as health clinics, social care facilities, and school capacities. 
Such benefits are particularly pronounced in areas with outdated census data or 
where rapid demographic shifts outpace official statistics (Longley et al. 2024). In the 
second application, predicting PM 2:5 exposure, the model effectively integrates mor
phological (e.g. road density) and socio-demographic (e.g. deprivation, housing tenure) 
variables to reflect both emission and dispersion dynamics. By capturing interdepen
dencies across spatial tiers through a hierarchical graph, the model supports spatially 
adaptive policy design, for example, identifying hotspots that require the expansion of 
low-emission zones, prioritising neighbourhoods for new air quality monitors, or 
adjusting transport infrastructure in vulnerable districts. Crucially, the Bayesian design 
yields probabilistic predictions that are calibrated using CRPS, allowing policymakers 
to distinguish between areas with high predictive confidence and those where model 
uncertainty suggests the need for further investigation or data collection.

Moreover, further analysis indicates that introducing MSOAs, in addition to OAs and 
LSOAs, enriches the model with mid-scale socio-environmental indicators. This extra tier 
provides a more comprehensive view of how regional vulnerabilities and resources, 
including flood or heat sensitivity and healthcare infrastructure, can inform local popu
lation estimates. Although these enhancements do not radically transform predictive 
outcomes, they underline the synergy between finer and coarser geographies in captur
ing how macro-level factors (e.g. city-wide climate risks) intersect with more localised 
phenomena (e.g. neighbourhood demographics). By incorporating MSOA attributes into 
the heterogeneous graph, the SR-BHGNN captures more holistic cross-scale interactions 
that may be overlooked if only two census tract scales are considered. At the same 
time, these findings confirm that simply stacking additional layers does not guarantee 
substantial performance gains: the distinctiveness and relevance of the newly intro
duced features remain pivotal (Miller and Wentz 2003). Ultimately, blending mid-scale 
insights with fine-grained local data enables more nuanced analyses of urban processes, 
particularly in contexts where environmental risks or infrastructural disparities extend 
across multiple spatial tiers and shape local socio-demographics. In doing so, our pro
posed approach helps unlock the potential of multiscale urban analytics, resulting in a 
more holistic framework for interpreting and managing complex urban systems.

Although SR-BHGNN achieves strong performance across both case studies, the 
results should be interpreted in light of several data-related limitations. Our predictors 
draw on widely used, publicly available sources, Office for National Statistics small-area 
geographies, GSV and OSM, but each carries intrinsic constraints. OSM is a crowd- 
sourced product, and although coverage in London is generally high for the structural 
indicators used here, variations in completeness and positional accuracy by feature 
type or neighbourhood can introduce unquantified uncertainty.
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A further limitation of this study concerns the temporal alignment of the datasets used. 
The Street View imagery spans 2019–2025, OSM features were extracted in 2025, and the 
PM 2:5 outcome for the second case study reflects conditions in 2013. The predictor set 
combines several types of variables with differing temporal sensitivities. Built-form and 
street-network indicators derived from OSM and GSV generally represent structural charac
teristics that tend to evolve gradually at the neighbourhood scale. In contrast, socio- 
demographic and deprivation measures (e.g. England IoD domains, LOAC variables) may 
respond more rapidly to policy interventions, modifications in service provision, or 
changes in demographic composition in the UK context (Singleton and Longley 2009, 
Singleton et al. 2016). Because the degree of local change during these intervals cannot be 
fully established with the available data, the temporal mismatch between predictors and 
outcomes may contribute to the uncertainties observed in some areas.

Importantly, this study is primarily methodological in nature, and we did not 
attempt comprehensive temporal harmonisation or a formal audit of neighbourhood- 
level change. We therefore treat temporal misalignment as an inherent source of 
uncertainty that may affect different predictors to different extents, without assuming 
uniform temporal stability across the feature set. Future applications of SR-BHGNN, 
particularly in rapidly changing urban contexts or when using more time-sensitive pre
dictors, can benefit from a deeper assessment of temporal sensitivity, data vintage, 
and their implications for multi-scale modelling.

7. Conclusion

This study introduces SR-BHGNN, a novel spatially regularised Bayesian hierarchical 
graph neural network for small-area estimation. By combining non-linear message 
passing, hierarchical pooling, and spatial regularisation, the model captures the com
plex interdependencies that shape urban phenomena across multiple census tract lev
els. Empirical evaluations on population estimation and air pollution prediction 
demonstrate that SR-BHGNN improves predictive accuracy and calibration, particularly 
in imbalanced or noisy datasets, while also providing actionable uncertainty estimates.

Future research could explore dynamic or temporal extensions to incorporate shifting 
demographic patterns or seasonal variations in pollutant concentrations, thereby captur
ing the evolving nature of urban systems. Alternative adjacency definitions, such as 
road-centric or multi-layer topologies, might yield superior results in contexts where lin
ear infrastructure determines movement patterns and emissions. Scenario analyses that 
manipulate policy assumptions or the degree of data availability would further clarify 
the robustness of model outcomes. Incorporating richer policy metadata, such as con
gestion charges, emission standards, or green infrastructure investments, may also 
enhance predictive accuracy and relevance by reflecting real-world regulatory levers.
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Appendix A. Sensitivity analyses: graph construction and additional 
baselines

This appendix reports additional analyses of SR-BHGNN under alternative graph specifications 
and with further baseline models. For consistency across methods, we use Case Study 1 (popu
lation estimation) as the basis for these comparisons. In addition to the Queen continuity spatial 
weights used in the main text for OA- and LSOA-level graph construction, in this appendix, we 
further explored the following commonly used adjacency definitions for census tracts:

� Rook contiguity
� Centroid-based k-nearest neighbours (kNN): k ¼ f8, 10, 12, 14, 16g
� Centroid distance bands: d 2 f500, 1000, 2000g metres

The cross-level connection between OAs and LSOAs remains the same as described in Section 3
in the main text. Because our study operates on census units rather than street-level topologies, 
barrier-aware or street-network-based graphs (e.g. removing edges across rivers or modelling 
bridges) are not implemented here and remain outside the scope of this paper.

In addition to RF, GAT, GAT-Concat, and Spatial HB reported in the main text, we include:

� Besag–York–Molli�e (BYM2) model with Integrated Nested Laplace Approximation (INLA): The 
BYM2 model is a classic spatial regression method used in disease mapping and small-area 
estimation (Besag et al. 1991). It decomposes spatial random effects into two parts: a struc
tured component that follows an intrinsic CAR, capturing spatial dependence, and an 
unstructured, independent and identically distributed element to account for overdispersion. 
We adapt the model to accommodate different likelihoods (a Poisson likelihood for regres
sion and a multinomial–logit likelihood for classification) and fit it using INLA (Rue et al. 
2009), with default penalised-complexity priors on the precision parameters. This provides a 
widely used Bayesian benchmark distinct from our Gibbs-based Spatial HB implementation.

� Graph Laplacian–regularised ridge (GLR): a non-deep, transductive linear baseline minimising 
k y − Xw k2

2 þa k w k2
2 þb f>L f; where f ¼ Xw are node-level predictions and L is the graph 

Laplacian (on Queen contiguity); this enforces smoothness of predictions over the graph 
without learned message passing (Liu et al. 2014, Romero et al. 2017). We tune the regular
isation parameters a and b on a small validation grid and report the best-performing values.

The training and test splits used for the BYM/INLA and GLR baselines are identical to those used 
for SR-BHGNN and baselines, ensuring that all models are evaluated on the same data. 

Appendix Table A1. Sensitivity of SR-BHGNN to graph construction and comparison to additional 
baselines.
Graph Variant Acc Prec Rec F1 R2 RMSE MAPE (%)

Rook 0.81 0.77 0.76 0.77 0.55 7611.45 41.25
kNN, k ¼ 8 0.80 0.76 0.75 0.76 0.54 7812.67 44.04
kNN, k ¼ 10 0.81 0.77 0.76 0.77 0.56 7553.46 40.59
kNN, k ¼ 12 0.81 0.77 0.76 0.77 0.55 7792.12 41.32
kNN, k ¼ 14 0.80 0.76 0.75 0.76 0.54 7901.23 41.81
kNN, k ¼ 16 0.70 0.67 0.68 0.68 0.50 9467.90 49.50
Distance band, d ¼ 500 m 0.79 0.75 0.74 0.74 0.52 8112.66 42.83
Distance band, d ¼ 1000 m 0.77 0.75 0.74 0.75 0.51 8209.28 43.05
Distance band, d ¼ 2000 m 0.69 0.66 0.71 0.69 0.50 9678.47 48.57
Baseline Model
BYM2 (INLA) 0.60 0.58 0.56 0.57 0.43 12451.97 57.81
GLR 0.64 0.60 0.57 0.58 0.36 13751.63 63.57
RF-Concat 0.49 0.48 0.45 0.46 0.04 21186.21 137.91
GRF-Concat 0.39 0.33 0.32 0.33 0.01 21891.43 154.72

Classification metrics (left) correspond to the population classification task; regression metrics (right) correspond to 
continuous population regression outcomes.
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Specifically, the BYM2 model utilises the same input as RF, GRF, and GAT; GLR uses the same 
inputs as for SR-BHGNN and BHGNN. Appendix Table A1 summarises indicative performance for 
the classification task (Accuracy/Precision/Recall/F1) and regression task (R2/RMSE/MAPE). 
Moreover, as described in Section 4.2, we report the results of RF-Concat and GRF-Concat in this 
appendix as additional baselines.

Across all alternative adjacency specifications in Appendix Table A1, SR-BHGNN maintains 
performance close to that reported in Table 2 in the main text. Results under Rook contiguity 
and moderate k-nearest-neighbour or distance-band graphs differ only marginally, indicating 
that the model is not unduly sensitive to reasonable choices of within-scale graph construction. 
Echoing existing literature on urban graph modelling with GNNs (Liu and De Sabbata 2021), 
extensive neighbourhood definitions (e.g. k ¼ 16 or a 2 km distance band) slightly reduce pre
dictive power by over-smoothing.

The additional baselines, BYM2 (INLA) and GLR, perform in line with the main-text compara
tors: both improve on a purely aspatial random forest but remain well below SR-BHGNN on 
both classification and regression metrics, which reinforces the main-text finding that explicitly 
modelling hierarchical structure and spatial regularisation within a learned representation deliv
ers consistent gains. Meanwhile, the results of RF-Concat and GRF-Concat support our finding 
that simply downscaling higher-level features and appending them to OA covariates does not 
improve accuracy; instead, it introduces pseudo–fine-scale noise (Goodchild and Lam 1980, 
Wong 2020) and undermines model stability.

Appendix B. Spatially robust validation

To complement the random 70/30 splits used throughout the main text, we performed a spa
tially robust validation to assess the impact of train–test proximity. Specifically, we implemented 
a spatial block cross-validation scheme at the OA level, still using Case Study 1 here to demon
strate the model performance.

London was partitioned into K non-overlapping, contiguous spatial blocks (based on k-means 
clustering on OA centroids in projected space, K ¼ 5). In each fold, one block was held out for 
testing while the remaining blocks were used for training, ensuring that no OA in the test fold 
is spatially adjacent to any OA in the training data. This reduces leakage due to train–test prox
imity and provides a stricter estimate of out-of-sample performance.

Hyperparameters were kept identical to those in the main experiments. For each fold, we 
recorded classification (Accuracy, Precision, Recall, F1) and regression (R2; RMSE, MAPE) metrics 
and then averaged across folds.

The spatially robust validation yields slightly lower metrics, as expected under stricter out-of- 
sample conditions; however, it demonstrates that our model still performs well under a spatially 
robust split, showing that the gains observed in the main text are not an artefact of train–test 
proximity (Appendix Table B1).

Appendix Table B1. Spatial block cross-validation performance of SR-BHGNN compared to the 
default random-split performance in Table 2.
Split type Acc Prec Rec F1 R2 RMSE MAPE (%)

Random 70/30 (main text) 0.85 0.92 0.72 0.81 0.58 7234.19 39.78
Spatial block CV (mean over 5 folds) 0.80 0.88 0.69 0.77 0.51 8050.31 43.27
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Appendix C. Feature-importance diagnostics at two hierarchical levels

To give readers an intuitive sense of what drives SR-BHGNN’s predictions, we compute global 
feature importance separately for OA-level and LSOA-level attributes. For each node type, we 
extract the posterior mean coefficients from the corresponding Bayesian linear layer of the fitted 
SR-BHGNN and rank features by the absolute magnitude of these coefficients, averaging over 
posterior samples. This yields a model-native, scale-specific measure of the contribution of each 
predictor to the latent representation used for classification. We emphasise that these values are 
conditional on the fitted model and evaluation data; different splits or model specifications 
could lead to different rankings. Appendix Figure C1 present the top features for the 
population-classification and PM 2:5-classification tasks. Panels (a) and (b) show LSOA-level pre
dictors; panels (c) and (d) show OA-level predictors.

For the population classification task, at the LSOA level, SR-BHGNN relies most strongly on 
built-form and deprivation indicators (building density, barriers to housing, road and sidewalk 
coverage, terrain, greenery), which provide the broader structural and socio-economic context 
within which small populations sit. At the OA level, the most influential features shift to house
hold and tenure characteristics (ownership type, occupancy rating, car ownership, qualification 
levels, part- vs. full-time work), capturing fine-grained differences between small areas. This pat
tern suggests that SR-BHGNN draws context from the upper scale while utilising detailed house
hold attributes to refine predictions at the lower scale.

Appendix Figure C1. Global feature importance derived from SR-BHGNN posterior coefficients. 
(a) LSOA-level features – population classification. (b) LSOA-level features – PM2:5 classification. 
(c) OA-level features – population classification. (d) OA-level features – PM2:5 classification. Higher 
values indicate stronger marginal contribution of the feature to the predictive score at the corre
sponding hierarchical level.
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For PM 2:5 classification, a similar but not identical pattern appears for air-pollution exposure. 
At the LSOA level, built-form and transport indicators (building, sidewalks, roads, greenery) 
remain dominant, reflecting their link to emission sources and dispersion environments. 
However, deprivation variables are less influential here than for the population. At the OA level, 
mobility and household indicators, such as the number of cars/vans, full-time/part-time employ
ment, and occupancy ratings, become more important, suggesting that local activity and mobil
ity capacity influence fine-scale PM 2:5 variation captured by the model.

These diagnostics indicate that SR-BHGNN integrates various types of information at each 
scale and for each task: broad structural and environmental contexts for LSOAs, and finer socio- 
demographic or mobility patterns for OAs. Such a diagnostic step provides a transparent, scale- 
specific picture of the model’s behaviour.
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